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Abstract. The experimentally observed filling factors of the fractional quantum Hall effect can
be described in terms of the composite fermion wave function of the Jastrow-Slater form
ΨCF
ν=p/(2mp+1) = P̂LLL

QN
j<k(zj − zk)2mΦp(B

∗) fully projected into the lowest Landau level. The Slater
determinant of the above composite fermion wave function represents the filled Landau levels of com-
posite fermions evaluated at the corresponding reduced magnetic field. For a system of fermions
studied in the thermodynamic limit, we prove that in the even-denominator-filled state limit (when
the number of filled Landau levels of composite fermions becomes infinite), the above compos-
ite fermion wave function exactly transforms into the Rezayi-Read Fermi-sea-like wave function
ΨFermi
ν=1/(2m) = P̂LLL

QN
j<k(zj − zk)2mDet{ϕk(r)} constructed by attaching 2m flux quanta to the Slater de-

terminant of two-dimensional free fermions at the density corresponding to that filling. We study the
composite fermion wave function and its evolution into the Fermi-sea-like wave function for a range of
filling factors very close to the even-denominator-filled state.

PACS. 71.10.Pm Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.) –
73.40.Hm Quantum Hall effect (integer and fractional) – 71.27.+a Strongly correlated electron systems;
heavy fermions

1 Introduction

The fractional quantum Hall effect [1] (FQHE) results
from a strongly correlated incompressible liquid state
[2,3] formed at special uniform densities ρ(ν) of a two-
dimensional (2D) electronic system which is subjected to
a very strong perpendicular magnetic field B. The dom-
inant sequence of fractional Hall states occurs when the
filling of the lowest Landau level (LLL) is ν = p/(2mp+1),
where p = 1, 2, . . . and m = 1, 2, . . . are integers. Much of
the theoretical work on the FQHE is based on the study
of the properties of a 2D fully spin-polarized (spinless)
system of N interacting electrons embedded in a uniform
positive background. The electrons with charge−e (e > 0)
and mass me are considered confined in the x − y plane
of area Ω and subjected to a magnetic field, B = (0, 0, B)
which is generated from the symmetric gauge vector po-
tential A(r) = (−By/2, Bx/2, 0). We will consider the
thermodynamic limit of an infinite system defined as the
limit of N electrons in a sample of area Ω, where N and
Ω go to infinity with the density kept constant.

The many-electron system is described by the Hamil-
tonian Ĥ = K̂+V̂ , where K̂ is the kinetic energy operator

K̂ =
1

2me

N∑
j=1

[−i~∇j + eA(rj)]
2 (1)
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and

V̂ =
N∑
j<k

v(|rj − rk|)− ρ(ν)
N∑
j=1

∫
d2r v(|rj − r|)

+
ρ(ν)2

2

∫
d2r1

∫
d2r2 v(|r1 − r2|) (2)

is the total electron-electron, electron-background and
background-background interaction potential, where
v(|rj − rk|) = e2/(4πε0ε|zj − zk|) is the interaction po-
tential, zj = xj + iyj is the location of the j-th electron
in complex coordinates and ε is the dielectric constant of
the background.

It has become clear in recent years that many essen-
tial features of the FQHE can be understood straight-
forwardly in terms of a new kind of particle, called a
composite fermion (CF), which is a bound state of an
electron and an even number of vortices of the many-body
quantum wavefunction [4,5] formed at the electronic den-
sities ρ(ν) = ν/(2πl0(B)2) where l0(B) =

√
~/(eB) is the

electronic magnetic length. The fundamental property of
the CF-s is that they experience a reduced effective field,
B∗ = B(1− 2mν) so that the quantum liquid of strongly
correlated electrons at B is equivalent to a quantum liq-
uid of weakly interacting CF-s at B∗. Since the degener-
acy of each Landau level is proportional to the magnetic
field, the degeneracy N∗s of each CF Landau level will be
smaller than the corresponding Ns for the electrons and
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will be given by N∗s = Ns(1 − 2mν). As a result the ef-
fective filling factor of CF-s will be an integer number
ν∗ = p and will correspond to stable electronic filling fac-
tors ν = ν∗/(2mν∗ + 1), where ν∗ = p is the number of
filled CF Landau levels.

There are two calculational schemes based on the in-
tuitive physics above. One constructs explicit wave func-
tions [4] while the second scheme employs a Chern-Simons
(CS) field theory [6] approach to investigate the CF state.
Although the two schemes are based on the same physics,
a precise quantitative relationship between them is not
clear. The trial wave function ΨCF

ν=p/(2mp+1) given by

ΨCF
ν=p/(2mp+1) = P̂LLL

N∏
j<k

(zj − zk)2mΦp(B∗), (3)

where Φp(B∗) is the Slater determinant wavefunction of
p filled CF Landau levels, evaluated at the magnetic field
shown in the argument and P̂LLL is the LLL projection
operator is due to Jain [4]. For the special case of the
ground state at ν = 1/(2m + 1), namely for p = 1
the above CF wave function becomes the Laughlin wave
function [3], which is already known to be a very accu-
rate representation of the exact ground state at ν = 1/3
and 1/5.

By contrast, the behaviour of such a system in the
vicinity of a filling factor with even denominator such as
ν = 1/(2m) is not well understood. At these fillings the
typical features of the FQHE are not observed and there
is sound experimental evidence [7,8] that these states are
Fermi-like compressible states. Based on a CS field ap-
proach, Halperin, Lee, and Read [6] (HLR) have proposed
a theory of a compressible Fermi-like behaviour and stud-
ied within the random-phase approximation (RPA) many
physical quantities. The CS formulation of interacting
electrons nicely realizes the concept of CF-s, in accordance
with the experimental observations, but nevertheless the
understanding, and even the evaluation of the RPA still
seem to be incomplete [9].

Several studies have shown that the above CF wave
function is a valid description for all experimentally ob-
served incompressible FQHE states. Intuitively, one would
expect that this description remains valid also for large
values of p. In particular, the limit p → ∞ corresponds
to the even-denominator-filled state ν = 1/(2m) which is
known to be a compressible Fermi-like state [10].

By studying the system of fermions in the thermody-
namic limit, we prove that in the even-denominator-filling
limit, the CF wave function of equation (3) exactly trans-
forms into the Rezayi-Read [11] Fermi-sea-like wave func-
tion constructed by attaching 2m flux quanta to the 2D
Fermi sea of free fermions at the corresponding density.
In Section 2 we give the proof of this transformation and
in Section 3 we present some numerical results obtained
by using the CF wave function in a wide range of filling
factors around the even-denominator-filled state and by
using the Fermi-sea-like wave function at the exact even-
denominator-filled state.

2 The composite fermions

The study of strongly correlated systems described by
equations (1, 2) constitutes a very difficult problem. The
simplest approach to understand the ground-state prop-
erties of such a many-body system is to construct a rea-
sonable trial wave function, such as the CF wave function
ΨCF
ν=p/(2mp+1) in order to incorporate the most prominent

physical processes at the very beginning. Then the calcula-
tion of the energy per particle or other physical quantities
of interest depends on the ability to compute exactly the
radial distribution function gν(r12) which in terms of the
trial CF many body wave function is given by

gν=p/(2mp+1)(r12) =

N(N − 1)
ρ(ν)2

∫
d2r3 · · ·d2rN |ΨCF

ν=p/(2mp+1)|2∫
d2r1 · · ·d2rN |ΨCF

ν=p/(2mp+1)|2
, (4)

and for the system under consideration will depend only
on the interparticle spatial distance r12 = |r1 − r2|. An
exact calculation of the radial distribution function can
be achieved only in very special cases and, in general, one
should adopt approximate methods to compute it. In this
case we note that since the CF wave function ΨCF

ν=p/(2mp+1)

is of Jastrow-Slater form then a natural method to be ap-
plied is the Fermi-hypernetted-chain [12–14] theory which,
as its Bose counterpart [3,15,16], allows for a realistic eval-
uation of several quantities for systems of fermions in the
thermodynamic limit.

Within the FHNC theory, the radial distribution func-
tion gν(r12) is expressed as a sum of irreducible clus-
ter diagrams constructed with (i) the “bosonic” bond
h(rjk) = f(rjk)2 − 1, where f(rjk)2 = |zj − zk|4m is
the dynamical correlation factor and (ii) the “statisti-
cal exchange” bond lp(rj , rk) = ρ̂p(rj , rk)/ρ(ν), where
ρ̂p(rj , rk) is the one-body density matrix corresponding
to the dynamically uncorrelated state Φp(B∗) and ρ(ν) is
the electronic (CF) density.

At this stage, the only quantities that specify the
Jastrow-Slater many-body wave function are the dynam-
ical correlation and the statistical exchange factor which
determine respectively the Jastrow and the Slater part of
the wave function. Knowing them, if we were able to sum
all the sets of cluster diagrams appearing in equation (4)
then in principle we would have been able to carry on an
exact calculation.

Unfortunately, it is known that the FHNC technique is
intrinsically approximated because there is a set of clus-
ter diagrams (corresponding to the so called elementary
diagrams) which cannot be fully included in any closed
form. Several schemes have been devised to include such
cluster diagrams at various levels of approximation. The
simplest approximation of totally neglecting the elemen-
tary diagrams (FHNC/0) leads to reliable results and we
adopted it in this paper.

The full FHNC/0 formalism and its application to the
Laughlin states has been reported elsewhere [17], here we
generalize it for the CF wave function of equation (3) by
skipping further details. In order to compute the statistical
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exchange factor corresponding to Φp(B∗) we need to know
the eigenstates corresponding to the uncorrelated system
of CF-s.

For a magnetic field B∗ applied in the z direction gen-
erated by a symmetric gauge vector potential A(r), the
eigenstates of the ideal Hamiltonian

Ĥ0 =
1

2me
[−i~∇+ eA(r)]2 (5)

for the various CF Landau levels n = 0, 1, 2, . . . are
given by

ϕn,l(z) =
1√

2nn!
exp

[
|z|2

4l0(B∗)2

][
2l0(B∗)

∂

∂z

]n
×
{
ϕ0,l(z) exp

[
− |z|2

4l0(B∗)2

]}
, (6)

where l0(B∗) =
√
~/(eB∗) is the CF’s magnetic

length and

ϕ0,l(z) =
1√
2ll!

[
z

l0(B∗)

]l
ϕ0,0(z), (7)

ϕ0,0(z) =
1√

2πl0(B∗)2
exp

[
− |z|2

4l0(B∗)2

]
, (8)

where l = 0, 1, . . . , (N∗s − 1) is the angular momentum
quantum number for the CF-s. The one-body density ma-
trix ρ̂p(r1, r2) is given by

ρ̂p(z1, z2) = gs

p−1∑
n=0

N∗s−1∑
l=0

ϕ∗n,l(z1)ϕn,l(z2), (9)

where the spin degeneracy gs of each CF Landau state is
gs = 1, since we are considering fully spin-polarized (spin-
less) electrons (CF-s). In the above equation, the sum is
extended over all occupied CF states, where ϕn,l(z) and
ϕ∗n,l(z) are respectively the single particle wave function
and its conjugate and we use complex coordinates zi in-
stead of the two-dimensional vectors ri.

Using a standard algebra, one can easily prove that
the contribution to ρ̂p(z1, z2) coming from the n-th CF
Landau level is

N∗s−1∑
l=0

ϕ∗n,l(z1)ϕn,l(z2) = Ln

( |z1 − z2|2
2l0(B∗)2

)

×
N∗s−1∑
l=0

ϕ∗0,l(z1)ϕ0,l(z2), (10)

where Ln(x) = ex

n!
dn

dxn (xne−x) are the Laguerre polyno-
mials of order n = 0, 1, . . . . By using the formulas given
in equations (7, 8) one can express the second term of
equation (10) as

N∗s−1∑
l=0

ϕ∗0,l(z1)ϕ0,l(z2) =
1

2πl0(B∗)2

× exp
[
−|z1|2 + |z2|2

4l0(B∗)2

]N∗s−1∑
l=0

1
l!

(
z∗1z2

2l0(B∗)2

)l
. (11)

In the thermodynamic limit both the density and the fill-
ing factor ν = N/Ns are kept constant as the number of
electronsN and the LL degeneracy Ns go to infinity. Since
the degeneracyN∗s of each CF Landau level is directly pro-
portional to Ns then also (N∗s − 1) goes to infinity in the
thermodynamic limit. As a result the summation over l in
equation (11) is extended from 0 to ∞ and one obtains

N∗s−1∑
l=0

ϕ∗0,l(z1)ϕ0,l(z2) =
1

2πl0(B∗)2

× exp
[
−|z1|2 + |z2|2

4l0(B∗)2

]
exp

[
z∗1z2

2l0(B∗)2

]
. (12)

By substituting equation (12) in equation (10), one notes
that, in the thermodynamic limit, the one-body density
matrix ρ̂p(z1, z2) given from equation (9) depends solely
on p and not N∗s and is given by

lp(r12) =

{
1
p

p−1∑
n=0

Ln

[ |z1 − z2|2
2l0(B∗)2

]}

× exp
[
−|z1 − z2|2

4l0(B∗)2

]
exp

[
z∗1z2 − z1z

∗
2

4l0(B∗)2

]
, (13)

where r12 = |z1 − z2| is the interparticle distance and
the last term of equation (13) is merely a phase fac-
tor. Since the reduced magnetic field is given by B∗ =
B/(2mp + 1) one notes that lp(r12) depends not only
on p, but also on m. We can further simplify this ex-
pression by noting that

∑p−1
n=0 Ln(x) = L1

p−1(x), where

Lkn(x) = (−1)k dk

dxk
(Ln+k(x)) are the associated Laguerre

polynomials of order n = 0, 1, . . . and degree k = 0, 1, . . .
Since both electrons and CF-s have the same density,

we can relate the CF magnetic length l0(B∗) to the true
electronic magnetic length l0(B) by the simple relation,
l0(B∗)2 = l0(B)2(2mp+ 1), so we finally can write lp(r12)
in terms of the natural dimensionless distance r12/l0(B) as

lp(r12) =

{
1
p
L1
p−1

[
1

2(2mp+ 1)

(
r12

l0(B)

)2
]}

× exp

[
− 1

4(2mp+ 1)

(
r12

l0(B)

)2
]

× exp
[

1
4(2mp+ 1)

z∗1z2 − z1z
∗
2

l0(B)2

]
. (14)

For a non-zero value of m, both the exponential factors
of equation (14) vanish in the p → ∞ limit; using the

formula lim
p→∞

L1
p(x/p)/p = J1(2

√
x)/
√
x we find that

lp→∞(r12) = 2
J1

(
1√
m

r12

l0(B)

)
(

1√
m

r12

l0(B)

) , (15)

where J1(x) is the Bessel function of the first order. We
note that this expression corresponds to the statistical
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exchange factor of a 2D system of fully-spin polarized
(gs = 1) free fermions whose Fermi radius is given by
kF(ν = 1/(2m)) = 1/(

√
ml0(B)).

This proves that, for a system of fermions studied in
the thermodynamic limit, the uncorrelated CF-s are ex-
actly transformed into 2D spinless free fermions in the
p→∞ limit, so that

lim
p→∞

ΨCF
ν=p/(2mp+1) = ΨFermi

ν=1/(2m), (16)

where the above Fermi wave function has the form

ΨFermi
ν=1/(2m) = P̂LLL

N∏
j<k

(zj − zk)2mDet{ϕk(r)}, (17)

and ϕk(r)− s are 2D normalized plane waves which fill a
Fermi disk up to |k| ≤ kF(ν = 1/(2m)). Based on these
arguments we would expect the Fermi wave function to be
a very good description for the even-denominator-filled
state ν = 1/(2m). Indeed, the finite-size calculations of
Rezayi and Read [11] have provided clear indications that
this trial Fermi wave function is a very good ansatz for
the ground state at 1/(2m).

The Rezayi-Read Fermi-sea-like wave function de-
scribes the even-denominator-filled state for both infinite
(thermodynamic limit) and finite N . For finite number of
particles, the CF wave function describes the filling state
ν = p/(2mp + 1) with the largest finite p constrained by
the size of system and finite number of particles. Depend-
ing on the finite values of N and Ω, the CF wave function
can describe states very close to filling ν = 1/(2m), but
not the exact filling ν = 1/(2m). In order to describe fill-
ing ν = 1/(2m) for a finite system of particles, one should
use the original Rezayi-Read Fermi-sea-like wave function.
Only in the thermodynamic limit and in the p→∞ limit,
the CF wave function and the Rezayi-Read Fermi-sea-
like wave function become identical and both describe the
same even-denominator-filled state ν = 1/(2m). By de-
scribing the filling factor ν = 1/(2m) with the trial Fermi
wave function ΨFermi

ν=1/(2m) we give the HLR approach in a
more physical and microscopic version. The resulting the-
ory is essentially equivalent [18] to the HLR theory, though
in the HLR approach a transformation involving attaching
delta-function fluxes to the electrons was employed.

3 Results and conclusions

In this paper we studied the CF wave function for a system
of fermions in the thermodynamic limit and in particular
its behaviour in a range of filling factors very close to the
even-denominator-filled state ν = 1/(2m). We prove that
in this limit the CF wave function ΨCF

ν=p/(2mp+1) exactly
transforms into the Rezayi-Read Fermi-sea-like wave func-
tion of equation (17) which is expected to be a very good
description of the even-denominator-filled states. We ap-
plied the FHNC/0 theory to compute the radial distribu-
tion function and related quantities corresponding to the
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Fig. 1. We plot the modulus squared statistical exchange fac-
tor |lp(r12)|2 corresponding to the Φp(B

∗) state for p = 1, 2, 3
and m = 1 and compare it with the analogous quantity cor-
responding to a 2D spinless system of free fermions at the
corresponding density.

CF wave function as it approaches the even-denominator-
filled state ν = 1/(2m). Although we do not include ex-
plicitly the projection operator and use an unprojected
wave function, the intrinsic LL mixing of the CF wave
function and the Jastrow factor already provide a good
projection [19] onto the LLL, that should be particularly
effective as far as ground-state properties are concerned.
The interaction energy per particle was computed from
the standard formula

uν=
1
N

〈ΨCF
ν |V̂ |ΨCF

ν 〉
〈ΨCF
ν |ΨCF

ν 〉
=
ρ(ν)

2

∫
d2r12[gν(r12)− 1]v(r12),

(18)

for ten filling factors ν = p/(2mp + 1) where p =
1, 2, . . . , 10 and for p → ∞. In particular we are inter-
ested in the series of filling factors with m = 1 which in the
p → ∞ limit ends with the half-filled state. As shown in
Figure 1 the modulus squared statistical exchange factor
|lp(r12)|2 corresponding to the uncorrelated state Φp(B∗)
is not very different from the modulus squared exchange
factor corresponding to the Slater determinant of plane
waves at filling ν = 1/(2m) even for relatively small val-
ues of p.

By increasing the value of p, as shown in Figure 2
the differences get extremely smaller and eventually van-
ish at filling factor ν = 1/(2m), where the state Φp(B∗)
transforms into a Slater determinant of 2D spinless free
fermions at the corresponding density. In Figure 3 we plot
the radial distribution function corresponding to the first
values of p for the series of filling factors ν = p/(2p + 1)
and we compare them to the radial distribution func-
tion of the ν = 1/2 state described by the Fermi wave
function ΨFermi

ν=1/(2m) for m = 1. One clearly notes that
the radial distribution function reveals more and more



O. Ciftja: The Fermi-sea-like limit of the composite fermion wave function 675

10.0 12.0 14.0 16.0 18.0 20.0
r/lo(B)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025
|lp

(r
)|

**
2

m=1 p=10
m=1 p=50
m=1 p=infinity

Fig. 2. For large values of p, the modulus squared statistical
exchange factor |lp(r12)|2 corresponding to the Φp(B

∗) state
converges into the analogous quantity for a 2D spinless system
of free fermions at a density corresponding to filling factor
ν = 1/2.
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Fig. 3. The radial distribution function gν(r) for filling factors
ν = p/(2p + 1), p = 1, 2, . . . described by ΨCF

ν=p/(2p+1) and for
the half-filled state ν = 1/2 state obtained as the p→∞ limit
of such fillings and described by the ΨFermi

ν=1/2 wave function. Cal-
culations were performed with an unprojected wave function
by using the FHNC/0 method.

pronounced peaks as the filling factor approaches the
even-denominator value 1/(2m). This oscillatory be-
haviour has been seen [20] in Monte-Carlo calculations
for filling factors in the vicinity of 1/2 (for instance fill-
ing 6/13) for both the projected and the unprojected CF
wave function and our findings agree with that picture.
Here we prove that the oscillations in the radial distri-
bution function persist as ν → 1/(2m) and get more
robust at ν = 1/(2m) in agreement with our expecta-
tions. As seen from Figure 4, the initial oscillations for

0.0 2.5 5.0 7.5 10.0 12.5
r/lo(B)

1.00

1.05

1.10

1.15

1.20

g(
r)

1/2
Fit

Fig. 4. The radial distribution function gν=1/2(r) for the half-
filled state described by the unprojected Fermi-sea-like wave
function ΨFermi

ν=1/2 as a function of the dimensionless distance
r/lo(B). The oscillations are fitted reasonably well by the func-

tion gν=1/2(r) − 1 ∝ sin(2r/lo(B))
(r/lo(B))α with α ≈ 2.6. The envelope

of gν=1/2(r)− 1 has as a power-law decay.

ν = 1/2 can be fitted reasonably well by the function
gν=1/2(r) − 1 ∝ sin(2r/lo(B))

(r/lo(B))α with the parameter α ≈ 2.6.
The presence of 2kF(ν = 1/2)r oscillations and a power-
law decay of the envelope provides clear evidence of Fermi-
like behaviour. For small finite values of p there are only a
few identifiable peaks of gν(r)−1, so an accurate analysis
of the decay of the oscillations is very difficult to per-
form, however for larger values of p, for instance p = 5, 6,
or 7, the same fitting function provides a rather good fit
(with α being p-dependent) with the envelope decaying as
a power-law also for such finite values of p.

Finite-size calculations for N = 9 spin-polarized (spin-
less) electrons confined to the LLL on a spherical sur-
face [11] by Rezayi and Read confirm the existence of some
sort of “Friedel-like” oscillations on the behaviour of g(r)
for filling ν = 1/(2m). The radial distribution function
for the exact N = 9 ground state at half-filling has been
found indistinguishable from that corresponding to the
projected Fermi wave function suggesting that this wave
function is a very good variational state. The FHNC/0
technique, which has the priority to treat in the thermo-
dynamic limit the many-body wave function ΨFermi

ν=1/(2m),
confirms and is in good qualitative agreement with this
oscillatory behaviour. In Table 1 we display the values of
the correlation energy per particle for ten states with fill-
ing factors ν = p/(2p+1) described by the unprojected CF
wave function. From the results shown in Table 1 and from
Figure 5 one notes that the correlation energy per particle
uν=p/(2mp+1) form = 1 smoothly converges to the ν = 1/2
value (dotted line) in the p → ∞ limit. If the results of
Table 1 are quoted in units of e2/(4πε0εR0(ν)), where
R0(ν) is the ion disk radius given by πR0(ν)2 = 1/ρ(ν),
we find that uν=p/(2p+1) = Ce2/(4πε0εR0(ν)), where C is
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Table 1. The interaction energy per particle uν correspond-
ing to the CF wave function ΨCF

ν=p/(2p+1) for filling factors
ν = p/(2p + 1) where p = 1, . . . , 10. In the p → ∞ limit
the above CF wave function exactly transforms into the Fermi
wave function ΨFermi

ν=1/2 which describes correlated 2D spinless
fermions at half filling. The interaction energy is expressed in
standard units of e2/(4πε0εl0(B)) where l0(B) is the electronic
magnetic length. The calculations were based on the FHNC/0
method using an unprojected wave function.

m p ν = p/(2mp+ 1) FHNC/0
1 1 1/3 −0.402(3)
1 2 2/5 −0.440(9)
1 3 3/7 −0.456(3)
1 4 4/9 −0.464(8)
1 5 5/11 −0.469(7)
1 6 6/13 −0.473(3)
1 7 7/15 −0.475(9)
1 8 8/17 −0.477(9)
1 9 9/19 −0.479(5)
1 10 10/21 −0.480(8)
1 ∞ 1/2 −0.492(1)
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Fig. 5. The interaction energy per particle corresponding to
the CF wave function ΨCF

ν=p/(2p+1) (circle) for several values of

p. In the p → ∞ limit the wave function ΨCF
ν=p/(2p+1) exactly

transforms into the Fermi wave function ΨFermi
ν=1/2 corresponding

to the half-filled state (dotted line). The energies are expressed
in standard units of e2/(4πε0εl0(B)) and the FHNC/0 method
was used to treat the unprojected wave functions.

roughly −1. Considering the more accurate Monte Carlo
data of Kamilla et al. [21] obtained with the same un-
projected wave function, one finds C ≈ −1.00(3). These
results are highly suggestive to write

uν=p/(2p+1) = C
e2

4πε0εR0(ν)
= C

√
ν

2
e2

4πε0εl0(B)
, (19)

with

C =
√

6
uν=1/3

e2

4πε0εl0(B)

· (20)

If one considers uν=1/3 = −0.410 e2

4πε0εl0(B) as the most
accurate correlation energy value for filling 1/3 then the
constant C should have the value C = −1.0043.

As a consequence of this, the radial distribution func-
tion corresponding to the unprojected CF wave function
describing filling states ν = p/(2p+ 1) should satisfy the
sum rule√

ν

2

∫
d
(

r

lo(B)

)[
gν

(
r

lo(B)

)
− 1
]

= C ≈ −1, (21)

which we have not been able to prove analytically. If one
uses fully projected CF wave functions [22] the quan-
tity uν=p/(2p+1)/[e2/(4πε0εR0(ν))] is no more a constant,
but is a monotonic function of p. These results can be
intuitively understood by considering the difference in
the short distance behaviours between various unpro-
jected and projected functions. For all unprojected ΨCF

ν=2/5,
ΨCF
ν=3/7, . . . the radial distribution function gν(r) ∼ r6, as

is also the case for ΨCF
ν=1/3. On the other hand, for trial

wave functions fully projected within the LLL, it can be
shown rigorously [23–25] that gν(r) ∼ r2 for ν > 1/3.
With the plausible assumption that the interaction en-
ergy per particle is governed by the short distance be-
haviour of gν(r), it is clear that the fully LLL projected
states at filling 2/5, 3/7, . . . will have the correlation en-
ergy per particle in units of e2/(4πε0εR0(ν)) higher than
the state at 1/3, but will have the same correlation energy
as the state at 1/3 for the unprojected wave functions of
equation (3).

In order to directly compare these results with the
available finite-size calculations [11], it would be highly
desirable to incorporate the LLL projection within the
FHNC/0 scheme. The inclusion of the LLL projection op-
erator immensely complicates the problem since in the
fully LLL projected Hilbert space of Laughlin-like Jastrow
wave functions, the plane wave ϕk(rj) = (1/

√
Ω) exp(ik ·

rj) acts as an operator; namely z∗j acts on a given function
as 2∂/∂zj and as a result the structure of a Slater deter-
minant of single-particle orbitals is lost. One can adopt
the projection technique by Bonesteel [26] used to calcu-
late the excitation gaps of ν = 1/3, 1/5 and 1/7, which
however is limited to Slater determinants spanning two
Landau levels only. The extension of such a technique to
more LL-s appears to be numerically unaccessible. A more
general projection scheme, applied to few electron systems
in a spherical geometry [27], seems to be more promising.
Such a scheme brings in a many-body dependency on all
single particle orbitals, which however can be handled by
introducing state-dependent correlations in the wavefunc-
tion, in close analogy to “backflow” correlations [28] of
liquid 3He. By dropping the LLL constraint and consid-
ering an unprojected wave function we make accessible
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the computation of several physical quantities without
having the limitations of the exact calculations with few
electrons where the extrapolation to the thermodynamic
limit is not totally unambiguous.

To conclude, we prove that for systems of fermions
studied in the thermodynamic limit the CF wave func-
tion exactly transforms into the Rezayi-Read Fermi-sea-
like wave function (see Eq. (17)) in the p → ∞ limit.
We study the behaviour of the CF-s for a range of fill-
ing factors very close to the even-denominator-filled state
and their evolution into a Fermi-like state at the even-
denominator-filled state. These calculations give support
to the picture of a robust Fermi-sea-like state of electrons
at ν = 1/(2m).
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